This article was downloaded by: [Tomsk State University of Control Systems and Radio]

On: 18 February 2013, At: 12:18

Publisher: Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered

office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals

Publication details, including instructions for authors and subscription information:

http://www.tandfonline.com/loi/gmcl19

The Structure Property Relationship of a Homologous Series of Mesogenic Compounds

Sakuntala Gupta ^a & Sukla Paul ^a

^a Department of Physics, North Bengal University, Siliguri, 734430, India

Version of record first published: 23 Sep 2006.

To cite this article: Sakuntala Gupta & Sukla Paul (1995): The Structure Property Relationship of a Homologous Series of Mesogenic Compounds, Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals, 260:1, 483-489

To link to this article: http://dx.doi.org/10.1080/10587259508038722

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

THE STRUCTURE PROPERTY RELATIONSHIP OF A HOMOLOGOUS SERIES OF MESOGENIC COMPOUNDS.

SAKUNTALA GUPTA AND SUKLA PAUL Department of Physics, North Bengal University, Siliguri-734430, India.

In this paper efforts have been investigate a relation between the molecular structure, packing coefficient and phase transition behaviour for series of homologous liquid crystals. We undertaken the studies of the twelve members Ωf series (nOCB) The molecules belonging to this series are asymmetric. The orientational order parameters phase calculated nematic have been the 9) molecules (n=5 to introducing asymmetry variation of order parameter with chain length near the transition temperature is discussed.

INTRODUCTION

The physical properties of liquid crystals such as orientational order parameter. properties etc. play an important role in the design liquid crystal devices. These properties are dependent on molecular structure and their packings coefficients. In these paper efforts have been investigate a relation between the molecular packing coefficients and phase transition behaviour homologous series 4-alkoxy-4-cyanobiphenyl (nOCB, 12). This series have been studied extensively by various experimental techniques 1-7. The molecules belonging to this series are asymmetric. The orientational order parameters have been calculated introducing this asymmetry (n=5 to 9) molecules in the nematic phase transition temperature and the variation of parameter with chain length is discussed.

CALCULATION

Packing coefficient

Molecular packing coefficient is defined as the ratio of the geometric volume of a molecule to that of the volume per molecule in the crystal. The volume increments for atomic combinations are calculated using the following formula given by Kitaigorodsky⁸

$$V = 4/3\pi R^3 - 1/3\pi h_i^2 (3R-h_i)$$

where R is the intermolecular radius of the atom concerned and R_i 's are the intermolecular radii of the atoms those are valence-bonded with this atom and are positioned at distance d_i from this atom. The height cut off segment is given by

$$h_i = R - (R^2 + d_i^2 - R_i^2) / 2d_i$$

Relevant data for packing coefficient calculations are taken from the crystal structure analysis of first seven compounds $^{9-11}$. For higher homologues (n=8 to 12) the cell

TABLE 1 Physical data for the series nOCB

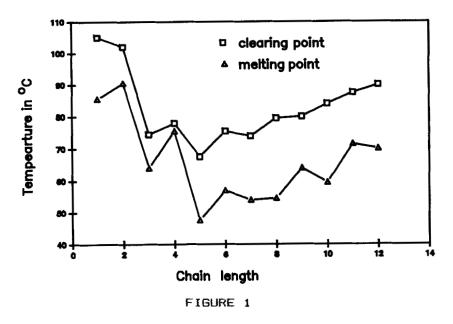
n	۷ol (A ³)	Z	Cry. Class	Density (gm/cc)	T ^m (^C C)	T _C (^{C)} C)	Packing Coeff.
<u> </u>	2237	8	Mono	1.24	85.5*	105.0	0.69
2	4856	16	Mono	1.22	90.5*	102.0	0.69
3	1317	4	Mono	1.19	64.0*	74.5	0.67
4	2904	8	Or th	0 1.14	75.5 [*]	78.0	0.64
5	1496	4	Mono	1.17	47.5	67.5	0.66
6	3263	8	Mono	1.14	57.0	75.5	0.64
7	1738	4	Ti	1.12	54.0	74.0	0.63
8	1804	4	Mono	1.13	54.5	79.5	0.64
9	1795	4	Mono	1.18	64.0	80.0	0.68
10	2028	4	Mono	1.09	59.5	84.0	0.63
11	2121	4	Mono	1.09	71.5	87.5	0.63
12	2214	4	Mono	1.09	70.0	70.0	0.63

^{* :}mono tropic nematic.

parameters have been determined from the powder diffraction data indexed by the program PPLP of the package program NRCVAX used for crystal structure analysis ^{12,13}. Values of the packing fractions along with other crystallographic data are given in Table I.

Orientational order parameter

We determined orientational order parameter (S) in the nematic phase of the molecule (n = 5 to 9) considering both the anisotropic dispersion and rigid body repulsion along with an additional force which destroys order when there is asymmetry in the molecules. We adopted the method of Shivaprakash et al¹⁴ and calculated the order parameter from the following equation


$$S = \frac{\int_{P_2(\cos\theta)}^{P_2(\cos\theta)} \exp(\Gamma SP_2(\cos\theta)) \sin\theta \ d\theta}{\int_{exp}^{P_2(\cos\theta)} (\Gamma SP_2(\cos\theta)) \sin\theta \ d\theta}$$

where
$$\Gamma = \frac{(a - b)z}{KT} + \frac{5\pi}{32} \Delta vn$$

a is the coefficient indicating the strength of the anisotropic part of the dispersion, b indicates the strength of the force that contribute to the destruction of the order, Z is the co-ordination number of the molecules, n the concentration of molecules, Δv change in volume. The geometrical data have been obtained from crystal structure analysis.

RESULTS AND DISCUSSIONS

The thermal stability data have been obtained from literature 14 and are given in Table 1. The variation of thermal stability with chain length is shown in figure 1. It is observed that the average thermal stability (clearing point) decreases with chain length, a common phenomenon for a homologous series of asymmetric molecules. There is a sudden change in slope at some member of this homologous series, indicating the onset of different mesomorphic state. This is in agreement with the experimental studies, which showed that this series have a systematic change of

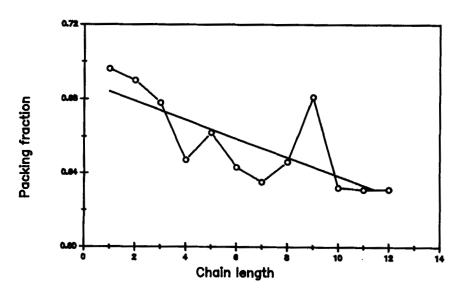


FIGURE 2 Packing coefficient against chain length.

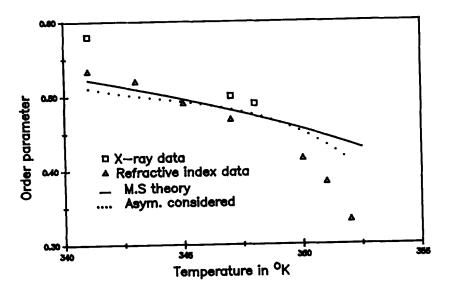


FIGURE 3 Dependence of order parameter on T°K

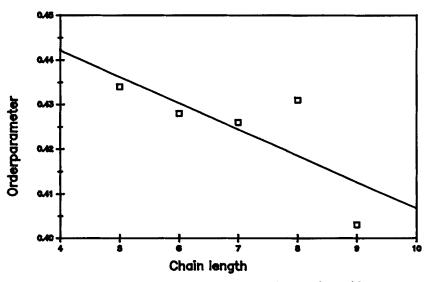


FIGURE 4 Order parameter versus chain length

phase sequences depending on chain length. The variation of melting point with chain length is also plotted in fig.1. Pronounced odd even effect is observed in the variation melting point with the no of carbon atoms in the chain. The variation of packing confident with n is shown in Packing confident decreases as n increases, which implies that an increase in packing confident increases the thermal stability. At n = 9 the packing confident i 5 high. This is similar to the behaviour of thermal stability. The variation of order parameter S with temperature for the compound gochis shown in the fig. 3. At higher temperature S drops off more rapidly when asymmetry is considered. This is in conformity with the experimental values of determined from optical studies. Calcite values of $T_{-}T = 2^{\circ}C$ in the nematic phase, considering asymmetry, plotted in fig.4 for the compounds (n = 5 to 9).

Order parameter decreases with chain length as is apparent from the figure. This is akin to the packing coefficient behaviour. We therefore find that order parameter depends on packing coefficient. Densely packed molecules have higher values of order parameter.

<u>ACKNOWLEDGEMENT</u>

thankful to Drs R.Paul We are and P. Mandal for their valuable suggestions in carrying out this work. S. Gupta gratefully acknowledges the financial support from CSIR, India.

REFERENCES:

- B.Bhattacharjee, S.Paul and R.Paul, Mol.Cryst.Liq.Cryst., 89, 181(1982).
- M.J.Bradshaw, E.P.Raynes, J.D.Bunning and T.E.Faber, J.Phys., 46, 1513(1985).
- J.D.Bunning, D.N.Crellin and T.E.Faber, Liq.Crystals, 1,
 (1986).
- M.Mitra, R.Paul and S.Paul, <u>Acta Physica Polonica</u>, <u>A78</u>, 454 (1990).
- M.Mitra, S.Paul and R.Paul, Z.Naturforsch., 46a, 858(1991).
- 6. M.Mitra, S.Gupta, R.Paul and S.Paul, Mol.Cryst.Liq.Cryst

199, 257(1991).

- 7. A.J.Leadbetter, J.C.Frost, J.P.Gaughan, G.W.Grey and A.Mosley, J. Phys., 40, 375(1979).
- A.I.Kitaigorodsky, Molecular Crystals and Molecules,
 Academic Press, New York-London, (1973).
- 9. L.Walz, H.Paulus and W.Haase, Zeitschrift fur Kristallographie., 180, 97(1987).10. P.Mandal and S.Paul, Mol.Cryst.Liq.Cryst., 131, 223(1985).
- 11. Kayako Hori, Yashika Koma, Akira Uchida and Yuji Ohashi, Mol. Cryst.Liq.Cryst., <u>225</u>, 15(1993).
- 12. S.Gupta and S.Paul, private communication.
- PC version of the NRCVAX Crystal Structure System, P.
 S. White, Department of Chemistry, University of New Brunswick, New Brunswick, Canada.
 N. C. Shivaprakash and J. Shashidhara Prasad, Mol.
- N. C. Shivaprakash and J. Shashidhara Prasad, Mol. Cryst. Liq. Cryst., 74, 215(1981).
- 15. Catalogue data, BDH Chemicals LTD.